- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kidder, Steven (2)
-
Soleymani, Hamid (2)
-
Garapić, Gordana (1)
-
Hirth, Greg (1)
-
Prior, David J. (1)
-
Scott, James M. (1)
-
Shao, Yilun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Peridotite xenoliths entrained in magmas near the Alpine fault (New Zealand) provide the first direct evidence of deformation associated with the propagation of the Australian-Pacific plate boundary through the region at ca. 25–20 Ma. Two of 11 sampled xenolith localities contain fine-grained (40–150 μm) rocks, indicating that deformation in the upper mantle was focused in highly sheared zones. To constrain the nature and conditions of deformation, we combine a flow law with a model linking recrystallized fraction to strain. Temperatures calculated from this new approach (625–970 °C) indicate that the observed deformation occurred at depths of 25–50 km. Calculated shear strains were between 1 and 100, which, given known plate offset rates (10–20 mm/yr) and an estimated interval during which deformation likely occurred (<1.8 m.y.), translate to a total shear zone width in the range 0.2–32 km. This narrow width and the position of mylonite-bearing localities amid mylonite-free sites suggest that early plate boundary deformation was distributed across at least ∼60 km but localized in multiple fault strands. Such upper mantle deformation is best described by relatively rigid, plate-like domains separated by rapidly formed, narrow mylonite zones.more » « less
-
Soleymani, Hamid; Kidder, Steven; Hirth, Greg; Garapić, Gordana (, Geology)Abstract Most exposed middle- and lower-crustal shear zones experienced deformation while cooling. We investigated the effect of the strengthening associated with such cooling on differential stress estimates based on recrystallized grain size. Typical geologic ratios of temperature change per strain unit were applied in Griggs Rig (high pressure-temperature deformation apparatus) general shear experiments on quartzite with cooling rates of 2–10 °C/h from 900 °C to 800 °C, and a shear strain rate of ∼2 × 10−5 s−1. Comparisons between these “cooling-ramp” experiments and control experiments at constant temperatures of 800 °C and 900 °C indicated that recrystallized grain size did not keep pace with evolving stress. Mean recrystallized grain sizes of the cooling-ramp experiments were twice as large as expected from the final stresses of the experiments. The traditional approach to piezometry involves a routine assumption of a steady-state microstructure, and this would underestimate the final stress during the cooling-ramp experiments by ∼40%. Recrystallized grain size in the cooling-ramp experiments is a better indicator of the average stress of the experiments (shear strains ≥3). Due to the temperature sensitivity of recrystallization processes and rock strength, the results may underrepresent the effect of cooling in natural samples. Cooling-ramp experiments produced wider and more skewed grain-size distributions than control experiments, suggesting that analyses of grain-size distributions might be used to quantify the degree to which grain size departs from steady-state values due to cooling, and thereby provide more accurate constraints on final stress.more » « less
An official website of the United States government
